<scp>MCML</scp> : Combining physical constraints with experimental data for a multi‐purpose meta‐generalized gradient approximation
نویسندگان
چکیده
The predictive power of density functional theory for materials properties can be improved without increasing the overall computational complexity by extending generalized gradient approximation (GGA) electronic exchange and correlation to functionals depending on kinetic energy in addition charge its gradient, resulting a meta-GGA. Here, we propose an empirical meta-GGA model that is based both physical constraints experimental quantum chemistry reference data. optimized MCML yields surface gas phase reaction energetics sacrificing accuracy bulk property predictions existing approaches.
منابع مشابه
Combining Data Clusterings with Instance Level Constraints
Recent work has focused the incorporation of a priori knowledge into the data clustering process, in the form of pairwise constraints, aiming to improve clustering quality and find appropriate clustering solutions to specific tasks or interests. In this work, we integrate must-link and cannot-link constraints into the cluster ensemble framework. Two algorithms for combining multiple data partit...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA new method for 3-D magnetic data inversion with physical bound
Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...
متن کاملApproximation with Interpolatory Constraints
Given a triangular array of points on [−1, 1] satisfying certain minimal separation conditions, a classical theorem of Szabados asserts the existence of polynomial operators that provide interpolation at these points as well as a near-optimal degree of approximation for arbitrary continuous functions on the interval. This paper provides a simple, functional-analytic proof of this fact. This abs...
متن کامل3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Chemistry
سال: 2021
ISSN: ['0192-8651', '1096-987X']
DOI: https://doi.org/10.1002/jcc.26732